科学研究

科学研究

学术讲座新
当前位置是: 首页 -> 科学研究 -> 学术讲座 -> 学术讲座新 -> 正文

Inference for Non-stationary Functional Time Series with Time-varying Trend

作者: 发布时间:2025年04月30日 08:51 点击数:
主讲人:杨立坚
主讲人简介:

杨立坚,清华大学统计与数据科学系长聘教授。北京大学数学学士(1987)、美国北卡罗来纳大学教堂山分校统计学博士(1995)、德国洪堡大学博士后(1995-97)。曾任美国密西根州立大学统计与概率系助理教授(1997-2001)、终身副教授(2001-06)、终身正教授(2006-14)、研究生主任(2007-10)、苏州大学特聘教授、高等统计与计量经济中心主任(2011-16)。获美国耶鲁大学出版社Tjalling C. Koopmans Econometric Theory Prize、美国统计协会会士(ASA Fellow)、国际数理统计学会会士(IMS Fellow)、国际工程技术协会杰出会士(IETI Distinguished Fellow)、国际统计学会当选会员(ISI Elected Member)。研究领域为函数型数据、时间序列数据、抽样调查数据、高维数据的统计推断,同时置信区域的理论与方法;随机过程的极值理论;统计学对经济学、食品科学、遗传学、神经科学和管理科学的应用。在Annals of Statistics、Annals of Probability、Journal of the American Statistical Association、Journal of the Royal Statistical Society B、Journal of Econometrics、Journal of Business and Economic Statistics等SCI期刊发表论文90余篇。

主持人:洪永淼
讲座简介:

Inference tools are developed for the time-varying mean function of functional time series. An “infeasible” B-spline estimator is proposed when all random trajectories are completely recorded without any error. Different from existing works on simultaneous inference for functional time series where confidence bands are built on classical central limit theory, we establish a Gaussian approximation for the standardized maximal deviation of the proposed “infeasible” estimator, rather than deriving its limit distribution via weak convergence in Banach space, leading to an “infeasible” simultaneous confidence region (SCR) of the time-varying bivariate mean function. When observations are only on discrete points with measurement errors, a two-step data-driven estimator is also proposed, equivalent to a tensor-product bivariate spline estimator. Under mild conditions, the two-step estimator is oracally efficient in the sense that it is asymptotically equivalent to the infeasible estimator. Asymptotically correct SCR with adaptive width for the bivariate mean function is constructed, the size of which is uniformly a factor of (logT)^(1/2) wider than pointwise confidence intervals, aided by a meticulous analysis of the extremes of the approximating Gaussian processes. Various extensions are also studied, including simultaneous inference for marginal univariate mean functions, and additivity test for the bivariate mean. Extensive simulation results strongly support the theoretical results, and a fertility rate example and temperature curve example illustrate the use of our methods. 

时间:2025-05-06 (Tuesday) 16:30-18:00
地点:厦门大学经济楼C108(线下分会场)、腾讯会议:154 222 945
讲座语言:中文
主办单位:厦门大学邹至庄经济研究院、厦门大学-中国科学院计量建模与经济政策研究基础科学中心、中国科学院数学与系统科学研究院预测科学研究中心、中国科学院大学经济与管理学院
承办单位:
期数:“邹至庄讲座”杰出学者论坛(第55期)
联系人信息:许老师,电话:2182991,邮箱:ysxu@xmu.edu.cn
TOP